64 research outputs found

    Estudio anatómico-histológico de las flores del endemismo Lamottea diania (Asteraceae) y de los efectos del ozono troposférico sobre su desarrollo.

    Get PDF
    "Estudio anatómico-histológico de las flores del endemismo Lamottea diania (Asteraceae) y de los efectos del ozono troposférico sobre su desarrollo". Lilloa 53 (2). Plantas del endemismo Lamottea diania se expusieron en cámaras OTC (Open Top Chambers) a aire ambiente filtrado y a aire ambiente no filtrado más 30 ppb de ozono para observar el efecto de este contaminante sobre el desarrollo de sus flores, particularmente sobre su androceo. Hemos comprobado, mediante estudios de microscopía óptica y electrónica, que el ozono afecta el proceso de desarrollo y maduración de los estambres y del polen. Las anteras se ven afectadas, en unos casos al abortar algunos estambres en su desarrollo y, en otros, impidiéndose el desarrollo correcto de los sacos polínicos en el interior de las mismas. Asimismo, el ozono impide la formación correcta del polen encontrando numerosos granos de polen sin desarrollar o desarrollados y madurados de forma anómala en el interior de los sacos polínicos. Los resultados indican que el ozono es el responsable del desarrollo anormal del androceo y del polen en plantas de L. diania. Anatomical and histological study of endemism flowers of Lamottea diania (Asteraceae) and the effects of tropospheric ozone on their development'. Lilloa 53 (2). Plants of endemism Lamottea diania were exposed in cameras OTC (Open Top Chambers) to filtered ambient air and ambient air unfiltered over 30 ppb ozone to observe the effect of this pollutant on the development of its flowers, particularly on its androecium. We have found, through studies of optical and electron microscopy, that ozone affects the process of development and maturation of stamens and pollen. The anthers are affected, in some cases by aborting some stamens in their development and in other, prevented the proper development of the pollen sacs within them. In addition, ozone prevents proper formationand maturation of pollen found many undeveloped pollen grains or developed abnormally inside the pollen sacs. Results indicate that ozone was responsible for the abnormal development of androecium and pollen in L. diania

    Ozone-induced reductions in below-ground biomass: an anatomical approach in potato

    Full text link
    [EN] Potato plants were grown in open-top chambers under three ozone concentrations during two complete cropping seasons (93 and 77 d in 2004 and 2005, respectively). The effects of chronic exposure to ozone on leaf anatomy, cell ultrastructure and crop yield were studied. Severe cell damage was found, even at ambient ozone levels, mainly affecting the spongy parenchyma and areas near the stomata. Damage to the cell wall caused loss of cell contact, and loss of turgor pressure due to tonoplast disintegration, contributed to cell collapse. Phloem sieve plates were obstructed by callose accumulation, and damaged mesophyll cells increased their starch stores. Tuber yield fell sharply (24–44%), due to the biggest tubers becoming smaller, which affected commercial yield. These anatomical findings show the mechanisms of ozone effect on assimilate partitioning, and thus crop yield decrease, in potato. Further implications of ozone causing reductions in belowground biomass are also discussed.The authors thank Prof Secundino del Valle (Valencia University, Spain) for his helpful comments. We are also grateful to Mr Duncan Gates for revising the English style of the text. AAF was supported by a grant from the Generalitat Valenciana's FPI programme (Government of Valencia, Spain).Asensi-Fabado, A.; García-Breijo, F.; Reig Armiñana, J. (2010). Ozone-induced reductions in below-ground biomass: an anatomical approach in potato. Plant, Cell and Environment. 33(7):1070-1083. doi:10.1111/j.1365-3040.2010.02128.xS1070108333

    Antimicrobial activity of xanthatin from Xanthium spinosum L

    Full text link
    [EN] Dichloromethane extracts from Xanthium spinosum L. were fractionated and the fractions tested for their bactericidal and fungicidal activity. From the active fraction, a compound was isolated and identified as xanthatin (I). Xanthatin was active against Colletotrichum gloesporoides, Trichothecium roseum, Bacillus cereus and Staphylococcus aureus.Ginesta Peris, E.; García-Breijo, F.; Primo Yúfera, E. (1994). Antimicrobial activity of xanthatin from Xanthium spinosum L. Letters in Applied Microbiology. 18(4):206-208. doi:10.1111/j.1472-765X.1994.tb00848.xS20620818

    Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    Full text link
    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD1.6) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. © 2010 Elsevier Ltd. All rights reserved.We thank both the Ministerio de Medio Ambiente y Medio Rural y Maritimo (in collaboration with ICP-Forests), and the Conselleria de Medi Ambient, Aigua i Habitatge and Interreg III (ForMedOzone and VegetPollOzone projects) for supporting the OTC activity. Institut Universitario CEAM-UMH is also supported by Generalitat Valenciana and Fundacion Bancaja, benefiting from CONSOLIDER-INGENIO 2010 (GRACCIE) and Prometeo (Generalitat Valenciana) Programs. Filippo Bussotti and two anonymous referees are thanked for their useful comments. Carmen Martin is also thanked for taking care of the plants.Calatayud, V.; Cervero, J.; Calvo, E.; García Breijo, FJ.; Reig Armiñana, J.; Sanz, M. (2011). Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environmental Pollution. 159(1):55-63. doi:10.1016/j.envpol.2010.09.024S5563159

    Gibberellic acid in Citrus spp. flowering and fruiting: A systematic review

    Full text link
    [EN] Background In Citrus spp., gibberellic acid (GA) has been proposed to improve different processes related to crop cycle and yield. Accordingly, many studies have been published about how GA affects flowering and fruiting. Nevertheless, some such evidence is contradictory and the use of GA applications by farmers are still confusing and lack the expected results. Purpose This review aims to collate, present, analyze and synthesize the most relevant empirical evidence to answer the following questions: (i) how does gibberellic acid act on flowering and fruiting of citrus trees?; (ii) why is all this knowledge sometimes not correctly used by farmers to solve yield problems relating to flowering and fruit set? Methods An extensive literature search to obtain a large number of records about the topic was done. Searches were done in five databases: WoS, Scopus, Google Academics, PubMed and Scielo. The search string used was "Gibberellic acid" AND "Citrus". Records were classified into 11 groups according to the development process they referred to and initial data extraction was done. Records related with flowering and fruit set were drawn, and full texts were screened. Fifty-eight full text records were selected for the final data extraction. Results Selected studies were published from 1959 to 2017 and were published mainly in Spain, USA, Brazil and Japan. Twelve species were studied, and Citrus sinensis, C. reticulata and C. unshiu were the principal ones. Most publications with pre-flowering treatments agreed that GA decreases flowering, while only 3 out of 18 did not observe any effect. In most of these studies, the effect on fruit set and yield was not evaluated. Studies with treatments at full bloom or some weeks later mostly reported increased fruit set. However, these increases did not imply higher yields. The results on yield were highly erratic as we found increases, decreases, no effects or variable effects. Conclusions Despite some limitations, the action of GA related to cell division and growth, stimulating the sink ability of the organ and discouraging its abscission, has been clearly established through reviewed studies. GA applications before flowering counteract the floral induction caused by stress reducing flowering. However, on adult trees under field conditions, reducing flowering by applying GA would be difficult because it would be necessary to previously estimate the natural floral induction of trees. During flowering and fruit set, many problems may arise that limit production. Only when the problem is lack of fruit set stimulus can GA applications improve yields. However, much evidence suggests that the main factor-limiting yield would be carbohydrate availability rather than GA levels. GA applications increased fruit set (often transiently), but this increase did not mean improved yields.This research was supported by the Asociacion Club de Variedades Vegetales Protegidas as part of a project undertaken with the Universitat Politecnica de Valencia (Spain, UPV 20170673), of which Merle H, was the principal researcher. There was no additional external funding received for this study.Garmendia, A.; Beltrán, R.; Zornoza, C.; García-Breijo, F.; Reig, J.; Merle Farinós, HB. (2019). Gibberellic acid in Citrus spp. flowering and fruiting: A systematic review. PLoS ONE. 14(9):1-24. https://doi.org/10.1371/journal.pone.0223147S124149Kende, H., & Zeevaart, J. (1997). The Five «Classical» Plant Hormones. The Plant Cell, 1197-1210. doi:10.1105/tpc.9.7.1197Roux, S. le, & Barry, G. H. (2010). Vegetative Growth Responses of Citrus Nursery Trees to Various Growth Retardants. HortTechnology, 20(1), 197-201. doi:10.21273/horttech.20.1.197Tan, M., Song, J., & Deng, X. (2007). Production of two mandarin × trifoliate orange hybrid populations via embryo rescue with verification by SSR analysis. Euphytica, 157(1-2), 155-160. doi:10.1007/s10681-007-9407-5Greenberg, J., Holtzman, S., Fainzack, M., Egozi, Y., Giladi, B., Oren, Y., & Kaplan, I. (2010). EFFECTS OF NAA AND GA3 SPRAYS ON FRUIT SIZE AND THE INCIDENCE OF CREASING OF «WASHINGTON» NAVEL ORANGE. Acta Horticulturae, (884), 273-279. doi:10.17660/actahortic.2010.884.32Bermejo, A., Primo-Millo, E., Agustí, M., Mesejo, C., Reig, C., & Iglesias, D. J. (2015). Hormonal Profile in Ovaries of Mandarin Varieties with Differing Reproductive Behaviour. Journal of Plant Growth Regulation, 34(3), 584-594. doi:10.1007/s00344-015-9492-yDavies, F. S., & Zalman, G. (2006). Gibberellic Acid, Fruit Freezing, and Post-freeze Quality of `Hamlin’ Oranges. HortTechnology, 16(2), 301-305. doi:10.21273/horttech.16.2.0301Guardiola JL. Overview of flower bud induction, flowering and fruit set. Proceedings of Citrus Flowering and Fruit short course IFAS Citrus Research and Education Center, University of Florida. 1997. pp. 5–21.Stover, E. (2000). Relationship of Flowering Intensity and Cropping in Fruit Species. HortTechnology, 10(4), 729-732. doi:10.21273/horttech.10.4.729Stephenson, A. G. (1981). Flower and Fruit Abortion: Proximate Causes and Ultimate Functions. Annual Review of Ecology and Systematics, 12(1), 253-279. doi:10.1146/annurev.es.12.110181.001345TAKAGI, T., TOMIYASU, A., MATSUSHIMA, M., & SUZUKI, T. (1989). Seasonal Changes of GA-like Substances in Fruit and Current Shoots of Satsuma Mandarin Trees. Journal of the Japanese Society for Horticultural Science, 58(3), 569-573. doi:10.2503/jjshs.58.569Goldschmidt, E. E., Aschkenazi, N., Herzano, Y., Schaffer, A. A., & Monselise, S. P. (1985). A role for carbohydrate levels in the control of flowering in citrus. Scientia Horticulturae, 26(2), 159-166. doi:10.1016/0304-4238(85)90008-1Mahouachi, J., Iglesias, D. J., Agustí, M., & Talon, M. (2009). Delay of early fruitlet abscission by branch girdling in citrus coincides with previous increases in carbohydrate and gibberellin concentrations. Plant Growth Regulation, 58(1), 15-23. doi:10.1007/s10725-008-9348-6Gallasch, P. (1978). Attempts to control alternate cropping of Valencia orange by inhibiting flower formation with gibberellic acid. Australian Journal of Experimental Agriculture, 18(91), 309. doi:10.1071/ea9780309Martínez-Fuentes, A., Mesejo, C., Muñoz-Fambuena, N., Reig, C., González-Mas, M. C., Iglesias, D. J., … Agustí, M. (2013). Fruit load restricts the flowering promotion effect of paclobutrazol in alternate bearing Citrus spp. Scientia Horticulturae, 151, 122-127. doi:10.1016/j.scienta.2012.12.014Moss, G., & Bevington, K. (1977). The use of gibberellic acid to control alternate cropping of Late Valencia sweet orange. Australian Journal of Agricultural Research, 28(6), 1041. doi:10.1071/ar9771041Shalom, L., Samuels, S., Zur, N., Shlizerman, L., Zemach, H., Weissberg, M., … Sadka, A. (2012). Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS ONE, 7(10), e46930. doi:10.1371/journal.pone.0046930Monselise, S. P. (1979). The use of growth regulators in citriculture; a review. Scientia Horticulturae, 11(2), 151-162. doi:10.1016/0304-4238(79)90040-2Guardiola, J. L., Almela, V., & Barrés, M. T. (1988). Dual effect of auxins on fruit growth in Satsuma mandarin. Scientia Horticulturae, 34(3-4), 229-237. doi:10.1016/0304-4238(88)90096-9Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), 264. doi:10.7326/0003-4819-151-4-200908180-00135Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics [Internet]. 2018. https://CRAN.R-project.org/package=ggplot2Bojanowski M, Edwards R. alluvial: Alluvial Diagrams [Internet]. 2016. https://CRAN.R-project.org/package=alluvialWilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” [Internet]. 2019. https://CRAN.R-project.org/package=cowplotRudis B, Gandy D. waffle: Create Waffle Chart Visualizations in R [Internet]. 2017. https://CRAN.R-project.org/package=waffleALTMAN, A., & GOREN, R. (1974). Interrelationship of Abscisic Acid and Gibberellic Acid in the Promotion of Callus Formation in the Abscission Zone of Citrus Bud Cultures. Physiologia Plantarum, 32(1), 55-61. doi:10.1111/j.1399-3054.1974.tb03726.xAltman, A., Gülsen, Y., & Goren, R. (1982). Growth and Metabolic Activity of Lemon Juice Vesicle Explants in Vitro. Plant Physiology, 69(1), 1-6. doi:10.1104/pp.69.1.1Amo-Marco, J. B. (1997). EFFECT OF PLANT GROWTH REGULATORS AND ORANGE JUICE ON GROWTH OF CALLUS FROM FRUIT TISSUES OF WASHINGTON NAVEL ORANGE. Israel Journal of Plant Sciences, 45(4), 293-296. doi:10.1080/07929978.1997.10676692Gmitter, F. G., Ling, X. B., & Deng, X. X. (1990). Induction of triploid Citrus plants from endosperm calli in vitro. Theoretical and Applied Genetics, 80(6), 785-790. doi:10.1007/bf00224192Spiegel-Roy, P., & Saad, S. (1986). Effect of carbohydrates and inhibitors of GA3 biosynthesis on embryogenenic potential of salt tolerant and non-tolerant callus lines of orange (Citrus sinensis osbeck). Plant Science, 47(3), 215-220. doi:10.1016/0168-9452(86)90181-0Shen, X., Orbović, V., Dutt, M., Castle, W. S., & Gmitter, F. G. (2013). Direct Shoot Organogenesis in Murraya paniculata (L.) Jack: A Prerequisite for Genetic Transformation. HortScience, 48(7), 938-941. doi:10.21273/hortsci.48.7.938Mehouachi, J., Tadeo, F. R., Zaragoza, S., Primo-Millo, E., & Talon, M. (1996). Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. Journal of Horticultural Science, 71(5), 747-754. doi:10.1080/14620316.1996.11515455Gambetta, G., Gravina, A., Fasiolo, C., Fornero, C., Galiger, S., Inzaurralde, C., & Rey, F. (2013). Self-incompatibility, parthenocarpy and reduction of seed presence in ‘Afourer’ mandarin. Scientia Horticulturae, 164, 183-188. doi:10.1016/j.scienta.2013.09.002Garmendia, A., Beltrán, R., Zornoza, C., Breijo, F., Reig, J., Bayona, I., & Merle, H. (2019). Insect repellent and chemical agronomic treatments to reduce seed number in ‘Afourer’ mandarin. Effect on yield and fruit diameter. Scientia Horticulturae, 246, 437-447. doi:10.1016/j.scienta.2018.11.025Alós, E., Cercós, M., Rodrigo, M.-J., Zacarías, L., & Talón, M. (2006). Regulation of Color Break in Citrus Fruits. Changes in Pigment Profiling and Gene Expression Induced by Gibberellins and Nitrate, Two Ripening Retardants. Journal of Agricultural and Food Chemistry, 54(13), 4888-4895. doi:10.1021/jf0606712Coggins C, Henning GL. Grapefruit rind blemish caused by interaction of gibberellic acid and wetting agents. International Citrus. Congress (6th: 1988: Tel Aviv, Israel): Margraf. 1988. pp. 333–338.Coggins, C. W., Scora, R. W., Lewis, L. N., & Knapp, J. C. F. (1969). Gibberellin-delayed senescence and essential oil changes in the Navel orange rind. Journal of Agricultural and Food Chemistry, 17(4), 807-809. doi:10.1021/jf60164a034El-Otmani, M., & Coggins, C. W. (1991). Growth regulator effects on retention of quality of stored citrus fruits. Scientia Horticulturae, 45(3-4), 261-272. doi:10.1016/0304-4238(91)90072-7El-Otmani, M., M’Barek, A. A., & Coggins, C. W. (1990). GA3 and 2,4-D prolong on-tree storage of citrus in Morocco. Scientia Horticulturae, 44(3-4), 241-249. doi:10.1016/0304-4238(90)90124-wFidelibus, M. W., Davies, F. S., & Campbell, C. A. (2002). Gibberellic Acid Application Timing Affects Fruit Quality of Processing Oranges. HortScience, 37(2), 353-357. doi:10.21273/hortsci.37.2.353Fidelibus, M. W., Koch, K. E., & Davies, F. S. (2008). Gibberellic Acid Alters Sucrose, Hexoses, and Their Gradients in Peel Tissues During Color Break Delay in ‘Hamlin’ Orange. Journal of the American Society for Horticultural Science, 133(6), 760-767. doi:10.21273/jashs.133.6.760Mcdonald, R. E., Greany, P. D., Shaw, P. E., & Mccollum, T. G. (1997). Preharvest applications of gibberellic acid delay senescence of Florida grapefruit. Journal of Horticultural Science, 72(3), 461-468. doi:10.1080/14620316.1997.11515534Zea-Hernández, L. O., Saucedo-Veloz, C., Cruz-Huerta, N., Ramírez-Guzmán, M. E., … Robles-González, M. M. (2016). Evaluation of post-harvest applications of gibberellic acid on the quality and shelf life of three varieties of Mexican lime. Revista Chapingo Serie Horticultura, XXII(1), 17-26. doi:10.5154/r.rchsh.2015.01.005Bower JP. The physiological control of citrus creasing. In: Albrigo LG, Sauco VG, editors. Citrus and Other Subtropical and Tropical Fruit Crops: Issues, Advances and Opportunities. 2004. pp. 111–115.Treeby, M. T., & Storey, R. (2002). Calcium-spray treatments for ameliorating albedo breakdown in navel oranges. Australian Journal of Experimental Agriculture, 42(4), 495. doi:10.1071/ea00149Li, J., Liang, C., Liu, X., Huai, B., Chen, J., Yao, Q., … Luo, X. (2016). Effect of Zn and NAA co-treatment on the occurrence of creasing fruit and the peel development of ‘Shatangju’ mandarin. Scientia Horticulturae, 201, 230-237. doi:10.1016/j.scienta.2016.01.039García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229Kojima, K., Shiozaki, K., Koshita, Y., & Ishida, M. (1999). Changes of Endogenous Levels of ABA, IAA and GA-like Substances in Fruitlets of Parthenocarpic Persimmon. Engei Gakkai zasshi, 68(2), 242-247. doi:10.2503/jjshs.68.242Salazar-Garcia, S., & Lovatt, C. J. (1999). Winter trunk injections of gibberellic acid altered the fate of `Hass’ avocado buds: Effects on inflorescence type, number and rate of development. The Journal of Horticultural Science and Biotechnology, 74(1), 69-73. doi:10.1080/14620316.1999.11511074El-Otmani, M., Lovatt, C. J., Coggins, C. W., & Agustí, M. (1995). Plant Growth Regulators in Citriculture: Factors Regulating Endogenous Levels in Citrus Tissues. Critical Reviews in Plant Sciences, 14(5), 367-412. doi:10.1080/07352689509701930El-Otmani, M., Coggins, C. W., Agusti, M., & Lovatt, C. J. (2000). Plant Growth Regulators in Citriculture: World Current Uses. Critical Reviews in Plant Sciences, 19(5), 395-448. doi:10.1016/s0735-2689(00)80025-8MARTINEZ-CORTINA, C., & SANZ, A. (1991). Comparison Between the Effect of the Fruit and of Exogenous GA3-Applications on Source-Sink Relationships in Citrus Sprouts. Annals of Botany, 68(2), 143-149. doi:10.1093/oxfordjournals.aob.a088232Mahouachi, J., Gómez-Cadenas, A., Primo-Millo, E., & Talon, M. (2005). Antagonistic Changes between Abscisic Acid and Gibberellins in Citrus Fruits Subjected to a Series of Different Water Conditions. Journal of Plant Growth Regulation, 24(3), 179-187. doi:10.1007/s00344-004-0001-yChao, C.-C. T., Khuong, T., Zheng, Y., & Lovatt, C. J. (2011). Response of evergreen perennial tree crops to gibberellic acid is crop load-dependent. I: GA3 increases the yield of commercially valuable ‘Nules’ Clementine Mandarin fruit only in the off-crop year of an alternate bearing orchard. Scientia Horticulturae, 130(4), 743-752. doi:10.1016/j.scienta.2011.08.036McFadyen, L., Robertson, D., Sedgley, M., Kristiansen, P., & Olesen, T. (2013). Effects of girdling on fruit abscission, yield and shoot growth in macadamia. Scientia Horticulturae, 164, 172-177. doi:10.1016/j.scienta.2013.09.006Cifuentes JI. Effect of the application of gibberellic acid on the fructification of mandarin clementine (Citrus clementina), cv. Clemenules and evaluation of two methods of measurement in the area of San Isidro, Quillota. Thesis. 1997;Bornscheuer CI. Effect of gibberellic acid applications on fruit set and productivity of Clementine mandarines (Citrus clementina) cv. Clemenules in the zone San Isidro, Quillota province, Fifth Region. Thesis. 1997;Krajewski, A. J., & Rabe, E. (1995). Citrus flowering: A critical evaluation. Journal of Horticultural Science, 70(3), 357-374. doi:10.1080/14620316.1995.11515306Sachs, R. M., Bretz, C. F., & Lang, A. (1959). SHOOT HISTOGENESIS: THE EARLY EFFECTS OF GIBBERELLIN UPON STEM ELONGATION IN TWO ROSETTE PLANTS. American Journal of Botany, 46(5), 376-384. doi:10.1002/j.1537-2197.1959.tb07027.xZacarias, L., Talon, M., Ben-Cheikh, W., Lafuente, M. T., & Primo-Millo, E. (1995). Abscisic acid increases in non-growing and paclobutrazol-treated fruits of seedless mandarins. Physiologia Plantarum, 95(4), 613-619. doi:10.1111/j.1399-3054.1995.tb05530.xTalon, M., Zacarias, L., & Primo-Millo, E. (1992). Gibberellins and Parthenocarpic Ability in Developing Ovaries of Seedless Mandarins. Plant Physiology, 99(4), 1575-1581. doi:10.1104/pp.99.4.1575Otero, A., & Rivas, F. (2017). Field spatial pattern of seedy fruit and techniques to improve yield on ‘Afourer’ mandarin. Scientia Horticulturae, 225, 264-270. doi:10.1016/j.scienta.2017.06.067Mauk, C. S., Bausher, M. G., & Yelenosky, G. (1986). Influence of growth regulator treatments on dry matter production, fruit abscission, and14C-assimilate partitioning in citrus. Journal of Plant Growth Regulation, 5(2), 111-120. doi:10.1007/bf02025962Duarte, A. M. M., García-Luis, A., Molina, R. V., Monerri, C., Navarro, V., Nebauer, S. G., … Guardiola, J. L. (2006). Long-term Effect of Winter Gibberellic Acid Sprays and Auxin Applications on Crop Value of `Clausellina’ Satsuma. Journal of the American Society for Horticultural Science, 131(5), 586-592. doi:10.21273/jashs.131.5.586Guardiola, J. L., Monerri, C., & Agusti, M. (1982). The inhibitory effect of gibberellic acid on flowering in Citrus. Physiologia Plantarum, 55(2), 136-142. doi:10.1111/j.1399-3054.1982.tb02276.xGarcia-Luis, A., Almela, V., Monerri, C., Agusti, M., & Guardiola, J. L. (1986). Inhibition of flowering in vivo by existing fruits and applied growth regulators in Citrus unshiu. Physiologia Plantarum, 66(3), 515-520. doi:10.1111/j.1399-3054.1986.tb05960.xIglesias DJ, Cercos M, Colmenero-Flores JM, Naranjo MA, Rios G, Carrera E, et al. Citrus: an overview of fruiting physiology. DeMatta F, editor. 2010.Mudzunga, M. J., Theron, K. I., & Rabe, E. (2001). Effects of early winter gibberellic acid and mineral oil applications on flowering of young non-bearing clementine (Citrus reticulata Blanco.) and satsuma (Citrus unshiu Marc.) trees. South African Journal of Plant and Soil, 18(4), 176-178. doi:10.1080/02571862.2001.10634427Muñoz-Fambuena, N., Mesejo, C., González-Mas, M. C., Iglesias, D. J., Primo-Millo, E., & Agustí, M. (2012). Gibberellic Acid Reduces Flowering Intensity in Sweet Orange [Citrus sinensis (L.) Osbeck] by Repressing CiFT Gene Expression. Journal of Plant Growth Regulation, 31(4), 529-536. doi:10.1007/s00344-012-9263-yMoss, G. I. (1969). Influence of Temperature and Photoperiod on Flower Induction and Inflorescence Development in Sweet Orange (Citrus SinensisL. Osbeck). Journal of Horticultural Science, 44(4), 311-320. doi:10.1080/00221589.1969.11514314Moss, G. (1976). Temperature effects on flower initiation in sweet orange (Citrus sinensis). Australian Journal of Agricultural Research, 27(3), 399. doi:10.1071/ar9760399Chao CT, Lovatt CJ. Effects of concentration and application time of GA(3) and urea on yield, fruit size distribution and crop value of Clementine mandarin in California. In: Webster AD, Ramirez H, editors. Proceedings of the Xth International Symposium on Plant Bioregulators in Fruit Production. 2006. p. 227.Pereira, C. S., Siqueira, D. L. de, Valiati, S., & Ferrari, E. (2014). Application of GA3 and girdling of branches on the production of extemporaneous fruits of «Tahiti» acid lime. Revista Ceres, 61(6), 970-974. doi:10.1590/0034-737x201461060012Esterhuizen HJ. The influence of pollination, gibberellic acid and irradiation on Minneola tangelo fruit (Citrus reticulata (Blanco.) x Citrus paradisi (Macf.));.(Afrikaans text);. Thesis. 1989;Brosh, P., & Monselise, S. P. (1977). Increasing yields of ‘Topaz’ mandarin by gibberellin and girdling in the presence of ‘Minneola’ pollinizers. Scientia Horticulturae, 7(4), 369-372. doi:10.1016/0304-4238(77)90009-7Koshita, Y., & Takahara, T. (2004). Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 99(3-4), 301-307. doi:10.1016/s0304-4238(03)00113-4Khunthong T. Effect of gibberellic acid and monopotassiumphosphate on flowering of lime (Citrus aurantifolia single) cv. Kai. 1993;Guardiola, J. L., Garcia-Mari, F., & Agusti, M. (1984). Competition and fruit set in the Washington navel orange. Physiologia Plantarum, 62(3), 297-302. doi:10.1111/j.1399-3054.1984.tb04576.xGonzález-Ferrer J, Agusti M, Guardiola JL. Fruiting pattern and retranslocation of reserves in Navelate and Washington navel oranges. International Citrus Congress. 1984. pp. 194–200.Moss, G. (1970). Chemical control of flower development in sweet orange (Citrus sinensis). Australian Journal of Agricultural Research, 21(2), 233. doi:10.1071/ar9700233Ogata, T., Ueda, Y., Shiozaki, S., Horiuchi, S., & Kawase, K. (1995). Effects of Gibberellin Synthesis Inhibitors on Flower Setting of Satsuma Mandarin. Engei Gakkai zasshi, 64(2), 251-259. doi:10.2503/jjshs.64.251Lord, E. M., & Eckard, K. J. (1987). Shoot Development in Citrus sinensis L. (Washington Navel Orange). II. Alteration of Developmental Fate of Flowering Shoots after GA3Treatment. Botanical Gazette, 148(1), 17-22. doi:10.1086/337623Khurshid T. Ralex (R) use for flower manipulation in “navel” oranges. In: Drew R, editor. Proceedings of the International Symposium on Harnessing the Potential of Horticult

    The organic air pollutant cumene hydroperoxide interferes with NOantioxidant role in rehydrating lichen

    Full text link
    Organic pollutants effects on lichens have not been addressed. Rehydration is critical for lichens, a burst of free radicals involving NO occurs. Repeated dehydrations with organic pollutants could increase oxidative damage. Our aim is to learn the effects of cumene hydroperoxide (CP) during lichen rehydration using Ramalina farinacea (L.) Ach., its photobiont Trebouxia spp. and Asterochloris erici. Confocal imaging shows intracellular ROS and NO production within myco and phycobionts, being the chloroplast the main source of free radicals. CP increases ROS, NO and lipid peroxidation and reduces chlorophyll autofluorescence, although photosynthesis remains unaffected. Concomitant NO inhibition provokes a generalized increase of ROS and a decrease in photosynthesis. Our results suggest that CP induces a ompensatory hormetic response in Ramalina farinacea that could reduce the lichen s antioxidant resources after repeated desiccation-rehydration cycles. NO is important in the protection from CP.This project was funded by the Spanish Ministry of Education and Science [project numbers CGL2012-40058-C02-01 and CGL2009-13429-C02-01], project Prometeo 2008/174 of the Generalitat Valenciana and the project AECID PCI/A/024755/09 of the Spanish Ministry of Foreign Affaires.Catalá, M.; Gasulla Vidal, F.; Pradas Del Real, A.; García Breijo, FJ.; Reig Armiñana, J.; Barreno Rodriguez, E. (2013). The organic air pollutant cumene hydroperoxide interferes with NOantioxidant role in rehydrating lichen. Environmental Pollution. 179:277-284. https://doi.org/10.1016/j.envpol.2013.04.015S27728417

    In Vivo Pollen Tube Growth and Evidence of Self-Pollination and Prefloral Anthesis in cv. Macabeo (Vitis vinifera L.)

    Full text link
    [EN] Cultivar Macabeo is one of the most planted white grape varieties of northern Spain. A general agreement supports many Vitis vinifera cultivars possibly being self-fertile, although this seems to be a variety-dependent characteristic. No previous information about the mating system of cv. Macabeo was found. This study aimed to analyze its mating system and to compare the in vivo fertilization process with and without artificial cross-pollination. Two treatments were performed: emasculation and cross-pollination. The seed number was counted, and pollen tube growth was observed by microscopy. The results showed that cv. Macabeo is self-fertile and selfing probably occurs before the flower opens. Pollen was found over the stigma of flowers before capfall and ovule fertilization was observed even in emasculated flowers, which suggests that germination and pollen tube growth happened in a very early flower development stage. Cross-pollination increased the presence of the pollen tubes growing inside flowers but was not necessary for fruit set. Ovule fertilization was very fast as 24 h (h) were enough for pollen tubes to reach the end of stylar canals.This research was supported by the Asociacion Club de Variedades Vegetales Protegidas as part of a project undertaken with the Universitat Politecnica de Valencia (Spain, UPV 20190822), of which H. Merle was the principal researcher. There was no additional external funding received for this study.García-Breijo, F.; Reig Armiñana, J.; Garmendia, A.; Cebrián, N.; Beltrán, R.; Merle Farinós, HB. (2020). In Vivo Pollen Tube Growth and Evidence of Self-Pollination and Prefloral Anthesis in cv. Macabeo (Vitis vinifera L.). Agriculture. 10(12):1-13. https://doi.org/10.3390/agriculture10120647S1131012FAO Resource Database, Crops http://www.fao.org/faostat/en/#data/Coito, J. L., Silva, H. G., Ramos, M. J. N., Cunha, J., Eiras-Dias, J., Amâncio, S., … Rocheta, M. (2019). Vitisflower types: from the wild to crop plants. PeerJ, 7, e7879. doi:10.7717/peerj.7879Bordeu, E., & Gil, G. (1983). Fructificación de la vid, cv. Moscatel Rosado, sometida a polinización artificial y eliminación manual de caliptras. Ciencia e investigación agraria, 10(3), 279-281. doi:10.7764/rcia.v10i3.728Sampson, B., Noffsinger, S., Gupton, C., & Magee, J. (2001). Pollination Biology of the Muscadine Grape. HortScience, 36(1), 120-124. doi:10.21273/hortsci.36.1.120Munoz-Rodriguez, A. F., Tormo, R., & Silva, M. I. (2011). Pollination Dynamics in Vitis vinifera L. American Journal of Enology and Viticulture, 62(1), 113-117. doi:10.5344/ajev.2010.10047PETRIE, P. R., & CLINGELEFFER, P. R. (2005). Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 11(1), 59-65. doi:10.1111/j.1755-0238.2005.tb00279.xEltom, M., Trought, M. C. T., Agnew, R., Parker, A., & Winefield, C. S. (2017). Pre-budburst temperature influences the inner and outer arm morphology, phenology, flower number, fruitset, TSS accumulation and variability of Vitis vinifera L. Sauvignon Blanc bunches. Australian Journal of Grape and Wine Research, 23(2), 280-286. doi:10.1111/ajgw.12260Culley, T. M., & Klooster, M. R. (2007). The Cleistogamous Breeding System: A Review of Its Frequency, Evolution, and Ecology in Angiosperms. The Botanical Review, 73(1), 1-30. doi:10.1663/0006-8101(2007)73[1:tcbsar]2.0.co;2Lord, E. M. (1981). Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. The Botanical Review, 47(4), 421-449. doi:10.1007/bf02860538Pereira, M. R., Ribeiro, H., Cunha, M., & Abreu, I. (2018). Comparison of pollen quality in Vitis vinifera L. cultivars. Scientia Horticulturae, 227, 112-116. doi:10.1016/j.scienta.2017.09.038Agricolae: Statistical Procedures for Agricultural Research https://CRAN.R-project.org/package=agricolaeHESLOP-HARRISON, Y., & SHIVANNA, K. R. (1977). The Receptive Surface of the Angiosperm Stigma. Annals of Botany, 41(6), 1233-1258. doi:10.1093/oxfordjournals.aob.a085414Mesejo, C., Martínez-Fuentes, A., Reig, C., & Agustí, M. (2007). The effective pollination period in ‘Clemenules’ mandarin, ‘Owari’ Satsuma mandarin and ‘Valencia’ sweet orange. Plant Science, 173(2), 223-230. doi:10.1016/j.plantsci.2007.05.00

    Trebouxia lynnae sp. nov. (Former Trebouxia sp. TR9): Biology and Biogeography of an Epitome Lichen Symbiotic Microalga

    Full text link
    [EN] Simple Summary In this work, we present the formal description of a new species of lichen photobiont (i.e., Trebouxia lynnae) isolated from the lichen Ramalina farinacea. The findings reported here provide an exhaustive characterization of the cellular ultrastructure, physiological traits and genetic and genomic diversity of the new species. Our results contribute to the knowledge of lichen-forming symbiotic green microalgae with their diversity and distribution. Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as a new taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture and thoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 to be a model/reference organism for studying mycobiont-photobiont association patterns in lichen symbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustive characterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available. The cellular ultrastructure was studied by light, electron and confocal microscopy; physiological traits were studied as responses to different abiotic stresses. The genetic diversity was previously analyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nuclear genome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecific diversity at a biogeographical level and its specificity association patterns with the mycobiont. Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and is presented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modern proponent for the significance of symbiosis in evolution. The complete set of analyses that were carried out for its characterization is provided.PROMETEO 2021/005 (Excellence in research, Generalitat Valenciana) and the Grants New Generation EU (Ministry of Universities) to Salvador Chiva (MS21-058) and Cesar Bordenave (ZA21-046)Barreno, E.; Muggia, L.; Chiva, S.; Molins, A.; Bordenave, C.; García-Breijo, F.; Moya, P. (2022). Trebouxia lynnae sp. nov. (Former Trebouxia sp. TR9): Biology and Biogeography of an Epitome Lichen Symbiotic Microalga. Biology. 11(8):1-19. https://doi.org/10.3390/biology1108119611911

    Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zo-haryi from the Canary Islands.

    Full text link
    [EN] The Canary Islands are famous for their extraordinary biodiversity; however, lichenized algae have only been studied partially. Buellia zoharyi is a circum-Mediterranean/Macaronesian species that usually occurs in semi-arid areas of the Mediterranean, but occasionally some interesting communities of this species grow on basaltic lava flows in Lanzarote, Fuerteventura and Tenerife. Those three locations showed similar ecological conditions, but different mean annual temperatures. Here we applied a multidisciplinary approach to describe microalgae diversity from B. zoharyi covering the entire described range of distribution in the Canary Islands. Photobionts were characterized in symbiosis using molecular and microscopic techniques. Different Trebouxia spp. were detected as primary photobiont in each island (Trebouxia cretacea-Fuerteventura, T. asymmetrica-Lanzarote and Trebouxia sp. `arnoldoi '-Tenerife). Coexistence of various Trebouxia spp. within a thallus were detected by using specific primers-PCR. Those three photobionts were isolated and cultured under laboratory conditions. Different phytohormone profiles were obtained in the isolated strains which suggest different internal signalling needs. In addition, we characterized the response of the isolated strains to different temperatures using chlorophyll fluorescence. T. asymmetrica did not modify their F-v/fm values with respect to temperature acclimation. In contrast, Trebouxia sp. `arnoldoi'and T. cretacea were more sensitive to changes in growing temperature decreasing Fv/fm at 17 degrees C. Our results indicate that B. zoharyi is flexible regarding the photobiont choice depending on the region, and suggest that bioclimatic factors could influence the myco/photobiont association patterns.Funding for field and laboratory work for this study was provided by the Ministerio de Economia y Competitividad (MINECO and FEDER, Spain) (CGL2016-79158-P) and Prometeo Excellence in Research Program (Generalitat Valenciana, Spain) (PROMETEOII/2013/021; PROMETEO/2017/039). Daniel Sheerin revised the English manuscriptMolins, A.; Chiva, S.; Calatayud, A.; Marco, F.; García-Breijo, F.; Reig-Arminana, J.; Carrasco, P.... (2020). Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zo-haryi from the Canary Islands. Symbiosis. 82(1-2):19-34. https://doi.org/10.1007/s13199-020-00722-8S1934821-2Alors D, Dal Grande F, Cubas P, Crespo A, Schmitt I, Molina MC, Divakar PK (2017) Panmixia and dispersal from the Mediterranean Basin to Macaronesian Islands of a macrolichen species. Sci Rep 7. https://doi.org/10.1038/srep40879Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16:3743–3752Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:147–153Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotox Environ Safe 73:603–612Barreno E (1994) Análisis fitogeográfico del elemento mediterráneo en líquenes. Studia Botanica 13:129–137Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326Beck A, Bechteler J, Casanova-Katny A, Dzhilyanova I (2019) The pioneer lichen Placopsis in maritime Antarctica: genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 79:1–24Bilger W, Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184:226–234Bischoff HW, Bold HC (1963) Physiological studies: IV. Some soil algae from enchanted rock and related algal species. University of Texas: publications no. 6318Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. Nov. B Torrey Bot Club 76:101–108Calatayud A, Roca D, Martínez PF (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Bioch 44:564–573Cao S, Zhang F, Liu C, Hao Z, Tian Y, Zhu L, Zhou Q (2015) Distribution patterns of haplotypes for symbionts from Umbilicaria esculenta and U. muehlenbergii reflect the importance of reproductive strategy in shaping population genetic structure. BMC Microbiol 15:1–12Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J Volcanol Geoth Res 60:225–241Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818Casares M, Llimona X (1983) Aportación al conocimiento de los líquenes calcícolas de la provincia de Granada. Collect Bot 14:221–230Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome. 5:82. https://doi.org/10.1186/s40168-017-0303-5Chiva S, Moya P, Molins A, Reig-Armiñana J, García-Breijo FJ, Barreno E (2016) Buellia zoharyi populations show noticeable microalgal diversity throughout their entire range of distribution. The 8th lAL symposium lichens in deep time. http://ial8.luomus.fi/wp-content/uploads/2014/09/IAL8_abstracts3007.pdfChiva S, Garrido-Benavent I, Moya P, Molins A, Barreno E (2019) How did terricolous fungi originate in the Mediterranean region? A case study with a gypsicolous lichenized species. J Biogeogr 46:515–525Clement MJ, Snell Q, Walker P, Posada D, Crandall KA (2002) TCS: estimating gene genealogies. Proceedings of the international parallel and distributed processing symposium. Brigham Young University, Provo, UTCrespo A, Barreno E (1975) Ensayo florístico y ecológico de la vegetación liquénica de los yesos del centro de España (Fulgensietalia desertori). Anal Inst Bot Cavanilles 32:873–908Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I (2014) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I (2018) Environment and host identity structure communities of green algal symbionts in lichens. New Phytol 217:277–289Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772del Campo E, Casano LM, Gasulla F, Barreno E (2010a) Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. Mol Phylogenet Evol 54:437–444del Campo EM, Gimeno J, Casano L, Gasulla F, García-Breijo F, Reig-Armiñana J, Barreno E (2010b) South european populations of Ramalina farinacea (L.) ach. Share different Trebouxia algae. Bibl Lichen 105:247–256del Campo EM, Catalá S, Gimeno J, del Hoyo A, Martínez-Alberola F, Casano L, Grube M, Barreno E (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83:310–323del Hoyo A, Álvarez R, del Campo EM, Gasulla F, Barreno E, Casano LM (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107:109–118Demmig-Adams B, Adams WW III, Barker D, Logan B, Bowing D, Verhoeven A (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264Doering M, Piercey-Normore MD (2009) Genetically divergent algae shape an epiphytic lichen community on Jack pine in Manitoba. Lichenologist 41:69–80Dupont A, Griffiths RI, Bell T, Bass D (2016) Differences in soil microÐeukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ Microbiol 18:2010–2014Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography−electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442Etayo J (2011) Líquenes y hongos liquenícolas [de la Comunidad Autónoma] del País Vasco. Catálogo del año 2010. Ihobe Flora 6:1–87Fernández-Mendoza F, Printzen C (2013) Pleistocene expansion of the bipolar lichen Cetraria aculeata into the southern hemisphere. Mol Ecol 22:1961–1983Fernández-Palacios JM, Whittaker RJ (2008) The canaries: an important biogeographical meeting place. J Biogeogr 35:379–387Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350Friedl T (1989) Comparative ultrastructure of pyrenoids in Trebouxia (microthamniales, chlorophyta). Plant Syst Evol 164:145–159Garrido-Benavent I, Ríos A, Fernández-Mendoza F, Pérez-Ortega S (2018) No need for stepping stones: direct, joint dispersal of the lichen-forming fungus Mastodia tessellata (Ascomycota) and its photobiont explains their bipolar distribution. J Biogeogr 45:213–224Gasulla F, Guéra A, Barreno E (2010) A simple and rapid method for isolating lichen photobionts. Symbiosis 51:175–179Gasulla F, Casano L, Guéra A (2019) Chlororespiration induces non-photochemical quenching of chlorophyll fluorescence during darkness in lichen chlorobionts. Physiol Plant 166:538–552Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Giralt M, Van den Boom PPG (2011) The genus Buellia sl and some additional genera of Physciaceae in the Canary Islands. Nova Hedwigia 92:29–55Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B (2011) Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid–liquid microextraction method. Plant Physiol Bioch 49:1259–1263Gutiérrez-Carretero L, Casares-Porcel M (2011) Los líquenes de los afloramientos de yeso de la península ibérica. In: Mota JF, Sanchez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF-Mediterraneo, Spain, pp 549–567Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55Hernández-Padrón CE, Pérez-Vargas I (2010) División lichenes y lichenicolous fungi. In: Arechavaleta M, Rodríguez S, Zurita N, García A (eds) Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). Consejería de Medio Ambiente y Ordenación Territorial Gobierno de Canarias, La Laguna, pp 63-87Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978Hinojosa-Vidal E, Marco F, Martínez-Alberola F, Escaray FJ, García-Breijo FJ, Reig-Armiñana J, Carrasco P, Barreno E (2018) Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. Planta 248:1473–1486Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780Kristl J, Veber M, Krajničič B, Orešnik K, Slekovec M (2005) Determination of jasmonic acid in Lemna minor (L.) by liquid chromatography with fluorescence detection. Anal Bioanal Chem 383:886–893Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660Leavitt SD, Nelsen MP, Lumbsch HT, Johnson LA, St Clair LL (2013) Symbiont flexibility in subalpine rock shield lichen communities in the southwestern USA. Bryologist 116:149–161Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch HT (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797Lindgren H, Velmala S, Högnabba F, Goward T, Holien H, Myllys L (2014) High fungal selectivity for algal symbionts in the genus Bryoria. Lichenologist 46:681–695Lu J, Magain N, Miadlikowska J, Coyle JR, Truong C, Lutzoni F (2018) Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. Am J Bot 105:1198–1211Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1-8Molins A, García-Breijo FJ, Reig-Armiñana J, del Campo EM, Casano LM, Barreno E (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum. Vieraea 41:349–370Molins A, Moya P, García-Breijo FJ, Reig-Armiñana J, Barreno E (2018a) Molecular and morphological diversity of Trebouxia microalgae in sphaerothallioid Circinaria spp. lichens. J Phycol 54:494–504Molins A, Moya P, García-Breijo FJ, Reig-Armiñana J, Barreno E (2018b) Assessing lichen microalgal diversity by a multi–tool approach: isolation, sanger sequencing, HTS and ultrastructural correlations. Lichenologist 50:123–138Moya P, Škaloud P, Chiva S, García-Breijo FJ, Reig-Arminana J, Vančurová L, Barreno E (2015) Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int J Syst Evol Micr 65:1838–1854Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12:e0175091. https://doi.org/10.1371/journal.pone.0175091Moya P, Chiva S, Molins A, Jadrná I, Škaloud P, Peksa O, Barreno E (2018) Myrmecia israeliensis as the primary symbiotic microalga in squamulose lichens growing in European and Canary Island terricolous communities. Fottea 18:72–85Moya P, Molins A, Chiva S, Bastida J, Barreno E (2020) Interaction patterns of symbiotic microalgae within biocrust lichen communities on harsh Iberian gypsum outcrops. Environ Microbiol. Acepted manuscript – under reviewMuggia L, Grube M (2018) Fungal diversity in lichens: from extremotolerance to interactions with algae. Life. 8. https://doi.org/10.3390/life8020015Muggia L, Zellnig G, Rabensteiner J, Grube M (2010) Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis 51:149–160Muggia L, Vancurova L, Škaloud P, Peksa O, Wedin M, Grube M (2013) The symbiotic playground of lichen thalli–a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol 85:313–323Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Phycobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475Muggia L, Leavitt S, Barreno E (2016) Report of the meeting of the Trebouxia-working group, Trieste, Italy. International lichenological newsletter 49:35–37Muggia L, Nelsen M, Kirika PM, Barreno E, Beck A, Lindgren H, Lumbsch HT, Leavitt SD, Trebouxia working group (2020) A phylogenetic overview on the diversity of the predominant lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta). Mol Phyl Evol 149:106821. https://doi.org/10.1016/j.ympev.2020.106821Ohmura Y, Kawachi M, Kasai F, Watanabe MM, Takeshita S (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109:43–59Ohmura Y, Takeshita S, Kawachi M (2018) Photobiont diversity within populations of a vegetatively reproducing lichen, Parmotrema tinctorum, can be generated by photobiont switching. Symbiosis 77:59–72Osmond CB, Ramus J, Levavasseur G, Franklin LA, Henley WJ (1993) Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid. Planta 190:97–106Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and F′v / F′m without measuring F′o. Photosynth Res 54(135):142Papageorgiou GC, Govindjee (2014) The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: Definitions, timelines, viewpoints, open questions. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee (eds) Nonphotochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration Vol. 40. Springer, Berlin-Heidelberg-New York, pp 1–44Paul F, Otte J, Schmitt I, Dal Grande F (2018) Comparing sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci Rep 8:8624. https://doi.org/10.1038/s41598-018-26947-8Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948Pichler G, Stöggl W, Candotto Carniel F, Muggia L, Ametrano CG, Holzinger A, Tretiach M, Kranner I (2020) Abundance and extracellular release of phytohormones in aeroterrestrial microalgae (Trebouxiophyceae, Chlorophyta) as a potential chemical signalling source. J Phycol. https://doi.org/10.1111/jpy.13032Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498Rambaut A (2014) FigTree 1.4.2 software. Institute of Evolutionary Biology, Univ.EdinburghRohácek K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and natural relationships. Photosynthetica 40:13–29Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209–1217Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542Roux C, Poumarat S (2015) Découverte de Buellia patouillardii (Hue) Zahlbr. (syn. Buellia zoharyi Galun) dans les Bouches-du-Rhône (Provence, France). Bull Ass Fr Lichénologie 40:11–20Sadowsky A, Ott S (2012) Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58:81–90Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62Sierra MA, Danko DC, Sandoval TA, Pishchany G, Moncada B, Kolter R, Mason CE, Zambrano MM (2020) The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00398Singh G, Dal Grande F, Schnitzler J, Pfenninger M, Schmitt I (2018) Different diversification histories in tropical and temperate lineages in the ascomycete subfamily Protoparmelioideae (Parmeliaceae). Mycokeys 36:1–19Škaloud P, Moya P, Molins A, Peksa O, Santos-Guerra A, Barreno E (2018) Untangling the hidden intrathalline microalgal diversity in Parmotrema pseudotinctorum: Trebouxia crespoana sp. nov. Lichenologist 50:357–369Smith H, Dal Grande F, Muggia L, Keuler R, Divakar PK, Grewe F, Schmitt I, Lumbsch HT, Leavitt SD (2020) Metagenomic data reveal diverse fungal and algal communities associated with the lichen symbiosis. BioRxiv. https://doi.org/10.1101/2020.03.04.966853Spribille T (2018) Relative symbiont input and the lichen

    Forced Flowering in Mandarin Trees Under Phytotron Conditions

    Full text link
    [EN] Phytotron has been widely used to assess the effect of numerous parameters on the development of many species. However, less information is available on how to achieve fast profuse flowering in young fruit trees with this plant growth chamber. This study aimed to outline the design and performance of a fast clear methodology to force flowering in young mandarin trees (cv. Nova and cv. Clemenules) and to analyze the influence of induction intensity on inflorescence type. The combination of a short water stress period with simulated spring conditions (day 13 h, 22 °C, night 11 h, 12 °C) in the phytotron allowed flowers to be obtained only after 68-72 days from the time the experiment began. Low-temperature requirements were adequately replaced with water stress. Floral response was proportional to water stress (measured as the number of fallen leaves): the greater the induction, the larger the quantity of flowers. Floral induction intensity also influenced inflorescence type and dates for flowering. Details on artificial lighting (lumens), photoperiod, temperatures, plant size and age, induction strategy and days for each stage are provided. Obtaining flowers from fruit trees at any time, and also several times a year, can have many advantages for researchers. With the methodology proposed herein, three, or even four, flowering periods can be forced each year, and researchers should be able to decide when, and they will know, the duration of the entire process. The methodology can be useful for: flower production and in vitro pollen germination assays; experiments with pests that affect early fruit development stages; studies on fruit physiological alterations. All this can help plant breeders to shorten times to obtain male and female gametes to perform forced-crosses.The authors thank Jose Javier Zaragoza Dolz for providing technical assistance and helping in the management tasks. This research was partially supported by the Asociacion Club de Variedades Vegetales Protegidas as part of a project undertaken with the Universitat Politecnica de Valencia (UPV 20170673).Garmendia, A.; Beltrán, R.; Zornoza, C.; García-Breijo, F.; Reig, J.; Raigón Jiménez, MD.; Merle Farinós, HB. (2019). Forced Flowering in Mandarin Trees Under Phytotron Conditions. Journal of Visualized Experiments. (145):1-9. https://doi.org/10.3791/59258S1914
    corecore